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ABSTRACT: To every semigroup presentation and every baseword, we associate a diagram group, defined as the 

fundamental group of the square complex. In this paper, we establish a new square complex over the direct product 

of two semigroup presentations. We first state and prove several theoretical properties of square complexes, in-

cluding the number of vertices and edges, the maximum subtree, the generators and relations of the square com-

plex. In addition, we provide formulas for the total number of generators of the diagram group and the number of 

normal subgroups of square complexes. 
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1. Introduction 

The first definition of diagram groups was introduced by Meakin and Sapir in (1997, 1999, 2002, 2006a, 2006b). 

However, their student, Kilibarda (1994; 1997) had worked out the first result on diagram group. Her work proved 

that every equivalence class of semigroup diagrams contains a unique diagram without dipoles. Such diagrams are 

called ‘reduced’. Since then, many articles have been dedicated to the understanding of which groups can be de-

scribed as (subgroups of) diagram groups and which properties can be deduced from such a description.  
Given two semigroup presentations 𝑃1  =  ⟨𝛴1 | 𝑅1⟩  and 𝑃2  =  ⟨𝛴2 | 𝑅2⟩  it is accepetedly that their direct product 

𝑃1 × 𝑃2 has a presentation  

⟨𝛴1, 𝛴2|𝑅1, 𝑅1, 𝑎𝑏 = 𝑏𝑎(𝑎 ∈ 𝛴1, 𝑏 ∈ 𝛴2)⟩ 

An immediate consequence of this is that 𝑃1 × 𝑃2 finitely generated if and only if both 𝑃1 and 𝑃2 are finitely gen-

erated, and is finitely presented if and only if both 𝑃1 and 𝑃2 are finitely presented. 

In their paper [2], Guba and Sapir explored several group-theoretical operations and demonstrated that the class 

of diagram groups is closed under these operations. These operations included finite direct products (a result ini-

tially due to Kilibarda [8]), free products, and a special operation (denoted by ∙), which was used to construct an 

example of a diagram group that is finitely generated but not finitely presented. 

In the construction described below, we consider a complex structure in conjunction with a graph of group struc-

tures. Specifically, we introduce a set 𝐹, which is disjoint from the vertex set 𝑉 and the edge set 𝐸. The set 𝐹 is 

called the set of cells. To each element in 𝐹, we assign a closed path, referred to as the defining path of the cell. In 

this context, we define a homotopy relation on the set of paths in the usual manner. Additionally, we can define 

the fundamental group of a complex 𝐾 with a basepoint www, denoted by  𝜋1(𝑆(𝑃), 𝑤). 

In the construction described below we will have a complex structure on together with the graphs of groups struc-

ture. This means that we have a set 𝐹 which is disjoint from 𝑉 and 𝐸. This set is called the set of cells. We also 

have a mapping that assigns a closed path to each element in F. This path is called the defining path of the cell. 

Given a complex we define the homotopy relation on the set of paths in a standard way. Also, one can define the 

concept of the fundamental group of 𝐾 with basepoint 𝑤, we denote this group by 𝜋1(𝑆(𝑃), 𝑤).  

We focus on complexes that have a graph of groups structure on their skeletons, and we refer to such structures as 

complexes of groups. The concept of a complex of groups is already well-established and widely used in the 

literature (see [6]). In our context, every square complex of groups, as we define it, is also a square complex of 

groups in the sense used in [6]; however, the converse is not necessarily true. In general, a square complex of 

groups is a structure that involves not only vertex groups 𝐺𝑣  , 𝑣 ∈ 𝑉 and edge groups 𝐺𝑒  , 𝑒 ∈ 𝐸., but also addi-

tional structure. 
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2 PRELIMINARIES  

In this section, we introduce some concepts, terminologies, and theorems, such as words, semigroup presentation, 

graphs, and square complexes that are necessary to highlights.  
Definition 2.1 Let 𝑋 be a non empty set (alphabet). A word 𝑊 on 𝑋 is defined to be of the form 𝑊 = 𝑥1

𝜀1𝑥2
𝜀2 … 𝑥𝑛

𝜀𝑛  

such that  𝑛 ≥ 0, 𝑥𝑖 ∈ 𝑋, 𝜀𝑖 = ±1. The length of 𝑊 is n and can be written as 𝐿(𝑊) = ∑ |𝜀𝑖|
𝑛
𝑖=1 = 𝑛. The empty 

word is the word when n is zero, denoted by 1. 
Definition 2.2 Let 𝛴 be the set of alphabets. A semigroup presentation 𝑃 is a pair 𝑃 =  (𝛴 | 𝑅),   where 𝑅 ⊆
𝛴 × 𝛴. An element 𝑥 ∈ 𝛴 is called a ‘generating symbol’; while an element (𝑈 , 𝑉 ) ∈ 𝑅 is called ‘defining rela-

tion’, and is usually written as 𝑈 = 𝑉. The semigroup defined by presentation is 𝛴
+

≈⁄ , where ≈ is the smallest 

congruence on 𝛴+ containing 𝑅. More generally, a semigroup 𝑃 is said to be defined by the presentation  (𝛴 | 𝑅), 

if  𝑆 ≅ 𝛴+

≈⁄ . Thus, elements of 𝑆 are in one-one correspondence with congruence classes of words from 𝛴+ rep-

resents an element of  𝑃. For the sake of simplicity, it will be always assumed that the set of relations 𝑅 in every 

semigroup presentation 𝑃 =  (𝛴 | 𝑅), satisfies the following condition: if (𝑈 , 𝑉 ) ∈ 𝑅, then (𝑉 , 𝑈 ) ∉ 𝑅. 
Definition 2.3 A graph  𝛤 is consisting of five pairs  (𝐸 , 𝑉 , 𝑖 , 𝜏 , −1) where 𝑉 and  𝐸 are two disjoint finite sets.  

Set  𝑉 is known as the set of vertices; while  𝐸 as the set of edges.  Symbols  𝑖 , 𝜏 , −1 are functions: 

                               𝑖 ∶   𝐸 ⟶ 𝑉  ,       𝜏: 𝐸 ⟶ 𝑉       ,       −1 ∶ 𝐸 ⟶ 𝑉 

such that: 

𝑖(𝑒) = 𝜏(𝑒 −1) , 𝜏(𝑒) = 𝑖(𝑒−1)   , 𝑒 ≠ 𝑒−1  ∀ 𝑒 ∈ 𝐸. 
If  𝑒 is an edge, then 𝑖(𝑒) is called the ‘initial vertex’ of  𝑒, and  𝜏(𝑒) is called the ‘terminal vertex’ of  𝑒. 
Definition 2.4 Let 𝑃 =  ⟨𝛴 | 𝑅⟩ be a semigroup presentation, i.e. an alphabet Σ and a collection of relations 𝑅 of 

the form 𝑤1  =  𝑤2 where 𝑤1, 𝑤2 are positive words written over 𝛴. In the sequel, we will always assume that 𝑅 

does not contain obvious redundancy, i.e. if 𝑤1  =  𝑤2 is in 𝑅 we will assume that 𝑤2  = 𝑤1 is not in 𝑅. In partic-

ular, 𝑅 does not contains a relation of the form 𝑤1  =  𝑤1. 

Definition 2.5 Let 𝑃 =  ⟨𝛴 | 𝑅⟩ be a semigroup presentation. The square complex 𝑆(𝑃) is the complex whose 

vertices are the positive words written over 𝛴; whose edges [𝑤1, 𝑤1  =  𝑤2, 𝑤2] connect two words aub and 𝑎𝑣𝑏 

if one can be obtained from the other by applying a relation 𝑤1  =  𝑤2 from 𝑅. 

Definition 2.6 Let 𝑃 =  ⟨𝛴 | 𝑅⟩  be a semigroup presentation, where 𝛴 is a set of alphabet and elements of 𝑅 are 

in form of pairs of positive  

words 𝑅𝜀 = 𝑅−𝜀  on 𝛴. An atomic picture 𝐴 over 𝑃 is of the form shown in Figure 1. 

 

 

 

 

 

 

 

 

The inverse of 𝐴 is  𝐴−1 = (𝑤1, 𝑅−𝜀 → 𝑅𝜀, 𝑤2), such that: 

𝑖(𝐴−1) = 𝜏(𝐴) = 𝑤1𝑅−𝜀𝑤2  and   𝜏(𝐴−1) = 𝑖(𝐴) = 𝑤1𝑅𝜀𝑤2. 

Thus, we can relate A as an edge 

  

 

 

 

 

 

of a square complex. 

Figure 1 Atomic picture 𝐴 over 𝑃 

𝑤1 

𝐴 = (𝑤1, 𝑅𝜀 → 𝑅−𝜀 , 𝑤2) 

𝑅𝜀 

𝑅−𝜀  

𝑤2 
← 𝑖(𝐴) = 𝑤1𝑅𝜀𝑤2 

← 𝜏(𝐴) = 𝑤1𝑅−𝜀𝑤2 

𝑤2 𝑤1 

𝑤1𝑅−𝜀𝑤2 

𝑤1𝑅𝜀𝑤2 

Figure 2 An edge of square complex   
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Suppose that 𝐴1, 𝐴2 are two atomic picture such that 𝜏(𝐴1) = 𝑖(𝐴2). Then we may define the composition 𝐴1 ∘

𝐴2  as a picture 

  

 

 

 

 

Collection of all possible composition of atomic pictures can be written as a connected square complex such that 

the edges are atomic pictures and vertices are all possible positive words on 𝛴+. As a connected square complex, 

we may obtain the fundamental group, denoted by 𝐷(𝑃). This group is called the diagram group. (Refer[9]) 

Definition 2.7 Let 𝑃 =  ⟨𝛴 | 𝑅⟩ be a semigroup presentation. A square complex graph 𝑆(𝑃) can be associated by 

the following procedure: 

i. Consider as a 1-complex 𝑆(𝑃) coincide with the semigroup presentation 𝑃 viewed as a graph: 

a. The vertices are all positive words on 𝛴+, 
b. Positive edges are triples (𝑤1, 𝑅𝜀 → 𝑅_𝜀 , 𝑤2), where 𝑤1, 𝑤2  ∈ 𝛴+ and 𝑀 → 𝑁 ∈ 𝑅. 
c.  Negative edges are triples (𝑤1, 𝑅−𝜀 → 𝑅𝜀, 𝑤2) where 𝑤1, 𝑤2  ∈ 𝛴+ and 𝑁 → 𝑀 ∈ 𝑅. 
d.  If 𝑒 = (𝑤1, 𝑅𝜀 → 𝑅_𝜀 , 𝑤2) is an edge of 𝑆(𝑃), then 𝑒−1 = (𝑤1, 𝑅−𝜀 → 𝑅𝜀 , 𝑤2), 𝑖(𝑒) = 𝑤1𝑅𝜀𝑤2  and  

𝜏(𝑒) = 𝑤1𝑅−𝜀𝑤2. 

e. Pictorially, see (Figure 4 and Figure 5): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. In a  square complex the 2-cell of 𝑆(𝑃) are 5-tuples of the form (𝑤1, 𝑀1 → 𝑁1, 𝑤2, 𝑀2 → 𝑁2,𝑤3) where 

𝑤1, 𝑤2, 𝑤3 ∈ 𝛴+ and (𝑀𝑖 ,  𝑁𝑖) ∈ 𝑅 such that a 2-cell has the following defining path: 

(𝑤1𝑀1𝑤2,  𝑀2 → 𝑁2, 𝑤3)(𝑤1, 𝑀1 → 𝑁1 , 𝑤2𝑁2𝑤3)(𝑤1𝑁1𝑤2,  𝑀2 → 𝑁2, 𝑤3)−1 
From the previous figure, it is noticed that 2-cells correspond to independent applications of the relations 

from 𝑅. Applications of relations  𝑀1 → 𝑁1  and  𝑀2 → 𝑁2  to a word 𝑤1  are called ‘independent’ if the corre-

sponding occurrences of  𝑀1 and  𝑀2 do not have common letters: it does not matter which relation applies first 

and which relation applies second, it will be the same result. A note is also given to that diagram ∆ corresponding 

to the path (𝑤1, 𝑀1 → 𝑁1 , 𝑤2𝑁2𝑤3)(𝑤1𝑁1𝑤2,  𝑀2 → 𝑁2, 𝑤3) that has been considered in the diagram correspond-

ing to the defining path of the 2-cell  

(𝑤1 , 𝑀1 → 𝑁1, 𝑤2, 𝑀2 → 𝑁2,𝑤3) is ∆𝜊𝛥−1. Hence, this 2-cell is determined by the diagram ∆. 

            Squier et al. (1994) introduced this complex. They introduced the 1-skeleton of the complex and a ho-

motopy relation on the set of paths coinciding with the natural homotopy relation induced by 𝑆(𝑃).  

𝜋−1 ∶= 

𝑤1 𝑤2 

 

𝑅𝜀 

𝑅−𝜀  

≅ 

𝑤1𝑅𝜀𝑤2 

𝑤1𝑅−𝜀𝑤2 

𝑒−1 ∶= 

𝜋 ∶= 

𝑤1 𝑤2 

𝑅−𝜀  

𝑅𝜀 

≅ 

𝑤1𝑅−𝜀𝑤2 

𝑤1𝑅𝜀𝑤2 

𝑒 ∶= 

Figure 4 (𝑤1𝑅𝜀𝑤2, 𝑤1𝑅−𝜀𝑤2)-Picture 

𝐴1 

𝜏(𝐴1) = 𝑖(𝐴2) 

Figure 3 The composition 𝐴1 ∘ 𝐴2  

Figure 5 (𝑤1𝑅−𝜀𝑤2, 𝑤1𝑅𝜀𝑤2)-Picture 

𝐴2 
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Definition 2.8 Let 𝑃 =  ⟨𝛴 | 𝑅⟩ be a semigroup presentation and 𝑤 ∈  𝛴+ a baseword. The diagram group 

𝐷(𝑃, 𝑤) is the fundamental group 𝜋1(𝑆(𝑃), 𝑤) of the Squier square complex 𝑆(𝑃) based at 𝑤. 

Theorem 2.9 [8]Let  𝑃 be a semigroup presentation, and 𝑤 ∈  𝛴+  over the alphabet of  𝑆. Then, the diagram 

group 𝐷(𝑆(𝑃), 𝑤) is isomorphic to the fundamental group 𝜋1(𝑆(𝑃), 𝑤) of the square complex 𝑆(𝑃) with base-

point 𝑤. 
Proof:  See Guba and Sapir (1997). 

Proposition 2.10 [2] Free products of diagram groups are diagram groups. 

Proof: Let 𝐼 be a set. For every 𝑖 ∈  𝐼, let 𝑃𝑖 ∶=  ⟨𝛴𝑖  | 𝑅𝑖⟩ be a semigroup presentation and 𝑤𝑖  ∈  𝛴+ i a baseword. 

Without loss of generality, we assume that the alphabets𝛴𝑖     are pairwise disjoint. Set  

𝑃 = ⟨{𝑤} ∪𝑖∈𝐼 𝛴| ∪𝑖∈𝐼 𝑅𝑖 ∪ {𝑤 = 𝑤𝑖 , 𝑖 ∈ 𝐼} 

Then 𝐷(𝑃, 𝑤) is isomorphic to the free product ×𝑖∈𝐼 𝐷(𝑃𝑖 , 𝑤𝑖) because 𝑆(𝑃, 𝑤) coincides with the disjoint union 

of the 𝑆(𝑃𝑖 , 𝑤𝑖) together with the new vertex 𝑤 which is adjacent to all the 𝑤𝑖 . 

3. Materials and methods 
 

CONSTRUCTION OF SQUARE COMPLEX GRAPH FROM SEMIGROUP PRESENTATION 

In our previous research, we obtained the square complex from diagram group of semigroup presentations 2𝑆 =<
𝑎 , 𝑏 ∶ 𝑎 = 𝑏 > and 3𝑆 =< 𝑥 , 𝑦 , 𝑧 ∶  𝑥 = 𝑦 , 𝑦 = 𝑧 , 𝑧 = 𝑥 >. See Kalthom M. and Ahmad A. [11],[12]. In this 

paper, the resercher will discuss the square complex from diagram groups of direct product of two free semigroups 

generated by 𝐴, 𝐵, 𝑋, 𝑌 and 𝑍. Thus the square complexes given by 

𝑃 = 2 𝑃 ×  3 𝑃 = ⟨𝐴 , 𝐵, 𝑋 , 𝑌 , 𝑍 |𝑎𝑥 = 𝑎𝑦, 𝑎𝑦 = 𝑎𝑧 , 𝑎𝑧 = 𝑎𝑥, 𝑏𝑥 = 𝑏𝑦, 𝑏𝑦 = 𝑏𝑧 , 𝑏𝑧 = 𝑏𝑥(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈
𝐶, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍)⟩ will be constructed. 

Let 𝐿(𝑤) = 1, and 𝑤 ∈  𝛴+. So, the connected square complex graph is given by Figure 6 

 

 

 

 

 

 

Let 𝐿(𝑤) = 2, and 𝑤 ∈  𝛴+. So, the connected square complex graph is given by Figure 7. 

 

 

 

 

 

 

Note that 𝑆2(𝑃) are two copies of 𝑆1(𝑃), and each two vertices are joined together in each copy, respectively. 

Likewise, in the case of two copies of 𝑆2(𝑃), the  square complex graph 𝑆3(𝑃) may be obtained by repeating 

similar procedures to get 𝑆4(𝑃)  and so on. 

From those diagrams, we can conclude some properties. 

                Figure 6 The square complex 𝑆1(𝑃) 

𝑏𝑏𝑧 
𝑏𝑏𝑦 

𝑏𝑏𝑥 

𝑏𝑎𝑧 

𝑎𝑎𝑧 
𝑎𝑎𝑦 

𝑎𝑎𝑥 

𝑎𝑏𝑥 

𝑎𝑏𝑦 

𝑏𝑎𝑥 

𝑏𝑎𝑦 

         Figure 7 The square complex 𝑆2(𝑃) 

𝑒𝑎𝑏,𝑎𝑐 = (𝑎, 𝑦 → 𝑧, 1) 
𝑎𝑦 

𝑏𝑦 

𝑎𝑧 

𝑏𝑥 

𝑒𝑏𝑥,𝑏𝑧 = (𝑏, 𝑥 → 𝑥, 1) 

𝑏𝑧 

𝑒𝑎𝑦,𝑏𝑦 = (1, 𝑎 → 𝑐, 𝑦) 𝑒𝑏𝑥,𝑏𝑦 = (𝑏, 𝑥 → 𝑦, 1) 

𝑒𝑏𝑦,𝑏𝑧 = (𝑏, 𝑦 → 𝑧, 1) 

𝑒𝑎𝑥,𝑏𝑥 = (1, 𝑎 → 𝑏, 𝑥) 

𝑎𝑥 

𝑒𝑎𝑥,𝑎𝑦 = (1, 𝑥 → 𝑦, 𝑎) 

𝑒𝑎𝑥,𝑎𝑐 = (𝑎, 𝑥 → 𝑧, 1) 
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Observation 3.1 Two vertices 𝑤1 and 𝑤2 are connected if and only if  𝐿(𝑤1) = 𝐿(𝑤2). 
Observation3.2If 𝐿(𝑤1) = 𝐿(𝑤2). Then 𝜋1(𝑆(𝑃), 𝑤1) ≅ 𝜋1(𝑆(𝑃), 𝑤2). 
Observation 3.3 Vertices of 𝑆𝑛(𝑃) are all words of length 𝑛. 

In this recent study, the researcher will expand square complex of diagram group. 

Theorem3.4 Let 𝑃 = ⟨𝐴 , 𝐵, 𝑋 , 𝑌 , 𝑍 |𝑎𝑥 = 𝑎𝑦, 𝑎𝑦 = 𝑎𝑧 , 𝑎𝑧 = 𝑎𝑥, 𝑏𝑥 = 𝑏𝑦, 𝑏𝑦 = 𝑏𝑧 , 𝑏𝑧 = 𝑏𝑥(𝑎 ∈ 𝐴, 𝑏 ∈
𝐵, 𝑐 ∈ 𝐶, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍)⟩ be a semigroup presentation and 𝑤 ∈  𝛴+ in set 𝐴 ∪ 𝐵 ∪ 𝑋 ∪  𝑌 ∪  𝑍. Then the 

square complex of diagram group 𝐷(𝑆(𝑃), 𝑤) contains 3(2𝑛) vertices and  𝑒𝑛 = 2𝑒𝑛−1 + 6(𝑛 − 1) edges, and 

𝑒1 = 9. 

Proof. By arguing the induction on 𝑛. For 𝑛 = 1, the connected square complex graph of the diagram group 

𝐷( 𝑆1(𝑃), 𝑎𝑥) contains 3(21) = 6 vertices, and the total number of edges in 𝑆1(𝑃) is 𝑒1 = 9 see Figuare 6.  

For 𝑛 = 2, the square complex from diagram group 𝐷( 𝑆2(𝑃), 𝑎𝑎𝑥)  contains 3(22) = 12 vertices, and the total 

number of edges in 𝑆2(𝑃) is 𝑒2 = 2𝑒𝑛−1 + 6(𝑛 − 1) = 2𝑒2−1 + 6(2 − 1) = 18 + 6 = 24. 
For 𝑛 = 𝑘, assume 𝑆𝑘(𝑃)  contains 3(2𝑘) vertices, and the number of edges is 3(2𝑘+1). 

For 𝑛 = 𝑘 + 1, by the definition 𝑆𝑘+1(𝑃)  is just two copies of  𝑆𝑘(𝑃), and since 𝑆𝑘(𝑃) contains 3(2𝑘) vertices, 

3(2𝑘+1) edges, then 𝑆𝑘+1(𝑃) contains 2[3(2𝑘)] = 3(2𝑘+1) vertices, 2[3(2𝑘+1)] = 3(2𝑘+2) edges. 

Lemma 3.5 Let 𝑃 = ⟨𝐴 , 𝐵, 𝑋 , 𝑌 , 𝑍 |𝑎𝑥 = 𝑎𝑦, 𝑎𝑦 = 𝑎𝑧 , 𝑎𝑧 = 𝑎𝑥, 𝑏𝑥 = 𝑏𝑦, 𝑏𝑦 = 𝑏𝑧 , 𝑏𝑧 = 𝑏𝑥(𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈
𝐶, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍)⟩ be a graphical presentation. The general formula for the total number of generators of 

diagram group in the square complex 𝑆𝑛(𝑃) is 𝑒𝑛 = 2𝑒𝑛−1 + 1, where (𝑛 = 1,2, … , 𝑘) and 𝑒1 = 5. 

Proof. As defined above, 𝑆𝑛(𝑃) is two copies of  𝑆𝑛−1(𝑃), then the maximal subtree 𝑇𝑛 in 𝑆𝑛(𝑃) is two copies of 

the maximal subtree 𝑇𝑛−1 in 𝑆𝑛−1(𝑃). We know that the edge does not belong to the maximal subtree will be a 

generator. Thus, the generators of the fundamental group 𝜋1(𝑇𝑛) is two copies of generators in 𝜋1(𝑇𝑛−1) plus one 

generator between two maximal subtrees. Hence the number of generators of 𝜋1(𝑇𝑛) is 𝑒𝑖 = 2𝑒𝑖−1 + 1. 

Lemma 3.6 The number of normal subgroup s of the square complexes 𝑆𝑛(𝑃) is 𝑁𝑛 = 2𝑛. 

Proof. 𝑁1 = 21 = 2. Since there are two subgroups of  𝑆1(𝑃), the formula works for 𝑛 = 1. Then supposing that 

the formula holds for all natural numbers less than 𝑛, we will show that it holes for 𝑛. Since 𝑆𝑛(𝑃) is two copies 

of 𝑆𝑛−1(𝑃), and 𝑆𝑛−1(𝑃) contains 2𝑛−1normal subgroups, then 𝑁𝑛 = 2(2𝑛−1) = 2𝑛. 

3. Conclusion 
 

The paper provided, a new technique which has been explored to study diagram groups that was previously ob-

tained from direct product of two semigroup presentations, we have determined the connected square complex 

graph 𝑆𝑛(𝑃) , n ∈ N form diagram groups that were obtained from direct product of two semigroup presentations 

using the methods of covering space theory. 
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