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Abstract: 

This article explores soliton wave solutions for the system of the stochastic Radhakrishnan-Kundu-Lakshmanan 

(R.K.L) equations within magneto-optic waveguides. The system incorporates multiplicative white noise in the Ito 

sense and power law nonlinearity. The generalized  (𝐹′/𝐹) -expansion approach, along with the auxiliary equation  

𝐹′2(𝜉) = 𝑅0 + 𝑅2𝐹
2(𝜉) + 𝑅4𝐹

4(𝜉) , is utilized to derive exact optical wave solutions. The study presents a variety 

of soliton wave solutions, including dark (kink) and singular solitons, as well as Jacobi-elliptic functions wave 

solutions. Finally, a comparison is made between our findings and existing literature. 

Keywords: Radhakrishnan-Kundu-Lakshmanan equation; White noise; Generalized  (𝐹′/𝐹) -expansion ap-

proach; Magneto-optics waveguides. 

1. Introduction 
systems of nonlinear evolution equations are well-known for their importance in modeling various phenomena 

across the physical sciences, such as nonlinear optical fibers, waveguides, plasma physics, quantum optics, fluid 

dynamics, and telecommunications. As a result, there has been increasing interest from researchers in finding soliton 

wave solutions for these nonlinear partial differential equations (PDEs), leading to the exploration of various meth-

ods. Recent developments have delved into topics like dispersive solitons, highly-dispersive solitons, pure-cubic 

solitons, cubic-quartic solitons, dispersion-managed solitons, as well as the effects of white noise and magneto-optic 

waveguides, among many other related areas [1-13]. This study specifically focuses on optical solitons in dispersive 

media, which have been analyzed in several models, including the Fokas-Lenells equation [14] and the Schrödinger -

Hirota equation [15], among others. This article primarily focuses on dispersive solitons within the framework of 

the well-established R.K.L equation [15-26].  In this research, we examine the cubic system of magneto-optic wave-

guides associated with the nonlinear R.K.L equation, incorporating nonlinear power law and multiplicative white 

noise [26]. 

𝑖𝜑𝑡 + 𝑎1𝜑𝑥𝑥 + (𝑏1|𝜑|
2𝑛 + 𝑐1|𝜓|

2𝑛)𝜑 + 𝑖[𝛽1𝜑𝑥𝑥𝑥 + 𝛼1(|𝜑|
2𝑛𝜑)𝑥] + 𝜎𝜑𝑊𝑡(𝑡) 

                       = 𝑄1𝜓 + 𝑖[𝜆1𝜑𝑥 + 𝜇1(|𝜑|
2𝑛)𝑥𝜑 + 𝜃1|𝜑|

2𝑛𝜑𝑥],                              (1) 

and 

𝑖𝜓𝑡 + 𝑎2𝜓𝑥𝑥 + (𝑏2|𝜓|
2𝑛 + 𝑐2|𝜑|

2𝑛)𝜓 + 𝑖[𝛽2𝜓𝑥𝑥𝑥 + 𝛼2(|𝜓|
2𝑛𝜓)𝑥] + 𝜎𝜓𝑊𝑡(𝑡) 

= 𝑄2𝜑 + 𝑖[𝜆2𝜓𝑥 + 𝜇2(|𝜓|
2𝑛)𝑥𝜓 + 𝜃2|𝜓|

2𝑛𝜓𝑥],          (2) 

Here,  𝜑(𝑥, 𝑡)  and  𝜓(𝑥, 𝑡)  represent complex-valued functions that characterize the wave profiles, while  

𝑎𝑗 ,  𝑏𝑗 ,  𝑐𝑗 ,  𝛽𝑗 ,  𝛼𝑗 ,  𝜎, 𝑄𝑗 ,  𝜆𝑗 ,  𝜇𝑗 ,  𝜃𝑗   (𝑗 = 1,2)  are real constants.  𝑄𝑗 (𝑗 = 1,2)  are the coefficients of magneto-

optic waveguides terms.  𝑎𝑗  are the coefficients of chromatic dispersion,  𝑏𝑗 ,  𝑐𝑗  are the coefficients of selfــ  phase 

modulation and crossــ  phase modulation respectively.  𝛽𝑗  are the coefficients of third order dispersion.  𝜆𝑗  are the 

coefficients of the intermodal dispersion,  𝛼𝑗 ,  𝜇𝑗  and  𝜃𝑗  are the coefficients of nonlinear dispersion terms. The 

solitary wave solutions for Equations (1) and (2) are obtained through the generalized  (𝐹′/𝐹) -expansion approach. 

This article is structured as follows: Section 2 offers a mathematical analysis of Equations (1) and (2). In Section 3, 

we will derive the optical solitons for these equations using the generalized  (𝐹′/𝐹) -expansion approach. Finally, 

Section 4 presents the conclusions derived from the study. 

2. Converting to ordinary differential equations 

For solving Equations (1) and (2), we suppose that the wave profiles take the forms: 

                         𝜑(𝑥, 𝑡) = 𝑈1(𝜉)𝑒
𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎2𝑡],                                              (3) 

                            𝜓(𝑥, 𝑡) = 𝑈2(𝜉)𝑒
𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎2𝑡],                                              (4) 
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                          𝜉 = (𝑥 − 𝜌𝑡), 𝜗(𝑥, 𝑡) = −𝜅𝑥 + 𝜔𝑡,                                             (5)  

where  𝜌 ,  𝜅  and  𝜔  are real constants, and the functions  𝜗(𝑥, 𝑡), 𝑈𝑗(𝜉) (𝑗 = 1,2)  are real functions. the constant  

𝜅  represents the frequency, while the constant  𝜌  represents the velocity and the constant  𝜔  represents the wave 

number. The function  𝜗(𝑥, 𝑡)  is the phase component. Finally, the functions  𝑈𝑗(𝜉) (𝑗 = 1,2)  are the amplitude 

components. By evaluating (3), (4) into Equations (1), (2), the real parts are derived as follows: 

(3𝜅𝛽1 + 𝑎1)𝑈1
′′ + [(𝛼1 − 𝜃1)𝜅 + 𝑏1]𝑈1

2𝑛+1 + 𝑐1𝑈1𝑈2
2𝑛     

                          −(𝜅3𝛽1 + 𝜅
2𝑎1 + 𝜅𝜆1 − 𝜎

2 + 𝜔)𝑈1 − 𝑄1𝑈2 = 0,                              (6) 

and 

(3𝜅𝛽2 + 𝑎2)𝑈2
′′ + [𝜅(𝛼2 − 𝜃2) + 𝑏2]𝑈2

2𝑛+1 + 𝑐2𝑈2𝑈1
2𝑛 

                    −(𝜅3𝛽2 + 𝜅
2𝑎2 + 𝜅𝜆2 − 𝜎

2 + 𝜔)𝑈2 − 𝑄2𝑈1 = 0.                                (7) 

Also, we can derive the imaginary parts as follows:  
 

𝛽1𝑈1
′′′ − [2𝑛(𝜇1 − 𝛼1) + 𝜃1 − 𝛼1]𝑈1

2𝑛𝑈1
′ − (3𝛽1𝜅

2 + 2𝑎1𝜅 + 𝜌 + 𝜆1)𝑈1
′ = 0,       (8) 

and  

𝛽2𝑈2
′′′ − [2𝑛(𝜇2 − 𝛼2) + 𝜃2 − 𝛼2]𝑈2

2𝑛𝑈2
′ − (3𝛽2𝜅

2 + 2𝑎2𝜅 + 𝜌 + 𝜆2)𝑈2
′ = 0.         (9) 

For simplicity, we can let 

                                                 𝑈2(𝜉) = 𝛺1𝑈1(𝜉),                                                           (10)  

where  𝛺1  is a constant, such that  𝛺1 ≠ 0  and  𝛺1 ≠ 1 . Equations (6), (7), (8) and (9) can be reduced as:  

(3𝜅𝛽1 + 𝑎1)𝑈1
′′ + [(𝛼1 − 𝜃1)𝜅 + 𝛺1

2𝑛𝑐1 + 𝑏1]𝑈1
2𝑛+1 

                          −(𝜅3𝛽1 + 𝜅
2𝑎1 + 𝜅𝜆1 − 𝜎

2 + 𝜔 + 𝛺1𝑄1)𝑈1 = 0,                           (11) 

(3𝜅𝛽2 + 𝑎2)𝑈1
′′ + [𝛺1

2𝑛(𝜅(𝛼2 − 𝜃2) + 𝑏2) + 𝑐2]𝑈1
2𝑛+1 

                          −(𝜅3𝛽2 + 𝜅
2𝑎2 + 𝜅𝜆2 − 𝜎

2 + 𝜔 +
𝑄2

𝛺1
)𝑈1 = 0,                                (12) 

 𝛽1𝑈1
′′′ − [2𝑛(𝜇1 − 𝛼1) + 𝜃1 − 𝛼1]𝑈1

2𝑛𝑈1
′ − (3𝛽1𝜅

2 + 2𝑎1𝜅 + 𝜌 + 𝜆1)𝑈1
′ = 0,      (13) 

𝛽2𝑈1
′′′ − 𝛺1

2𝑛[2𝑛(𝜇2 − 𝛼2) + 𝜃2 − 𝛼2]𝑈1
2𝑛𝑈1

′ − (3𝛽2𝜅
2 + 2𝑎2𝜅 + 𝜌 + 𝜆2)𝑈1

′ = 0.                   (14) 

On applying the  principle of linear independence on Equations (11) and (12), we get: 

                                                    𝜅 = −
𝑎1

3𝛽1
 or 𝜅 = −

𝑎2

3𝛽2
,                                        (15) 

and 

    
     𝜔 = 𝜎2 − (𝜅3𝛽1 + 𝜅

2𝑎1 + 𝜅𝜆1 + 𝛺1𝑄1)

or  𝜔 = 𝜎2 − (𝜅3𝛽2 + 𝜅
2𝑎2 + 𝜅𝜆2 +

𝑄2

𝛺1
)
},                                     (16) 

as well as the parametric restrictions: 

    
     (𝛼1 − 𝜃1)𝜅 + 𝛺1

2𝑛𝑐1 + 𝑏1 = 0

𝛺1
2𝑛[𝜅(𝛼2 − 𝜃2) + 𝑏2] + 𝑐2 = 0

},                                        (17) 

provided  𝑎𝑗 ≠ 0  and  𝛽𝑗 ≠ 0 (𝑗 = 1,2).  

Equations (13) and (14) are the same form under the following conditions: 

                                
𝛽1

𝛽2
=

2𝑛(𝜇1−𝛼1)+𝜃1−𝛼1

𝛺1
2𝑛[2𝑛(𝜇2−𝛼2)+𝜃2−𝛼2]

=
3𝛽1𝜅

2+2𝑎1𝜅+𝜌+𝜆1

3𝛽2𝜅
2+2𝑎2𝜅+𝜌+𝜆2

.                            (18) 

From Equations given by (18), we can determine the soliton velocity as: 

                                 𝜌 =
𝛽2(2𝜅𝑎1+𝜆1)−𝛽1(2𝑎2𝜅+𝜆2)

𝛽1−𝛽2
,                                                            (19) 

provided  𝛽1 ≠ 𝛽2.  
Now, let us solve Equation (13) under the conditions (18). To this aim, we integrate Equation (13) and put the in-

tegration constant equal to zero  

𝛽1𝑈1
′′ − [

2𝑛(𝜇1−𝛼1)+𝜃1−𝛼1

2𝑛+1
] 𝑈1

2𝑛+1 − (3𝛽1𝜅
2 + 2𝑎1𝜅 + 𝜌 + 𝜆1)𝑈1 = 0,                     (20) 

By considering  𝑈1
′′  and  𝑈1

2𝑛+1  in Equation (20), we determine  𝑁 =
1

𝑛
 . Subsequently, the transformation: 

                                           𝑈1(𝜉) = [𝑉(𝜉)]
1

𝑛,                                                          (21) 

where  𝑉(𝜉) > 0  is a function of  𝜉  and  𝑛 > 1 . Putting (21) into Equation (20) changes it to the new ODE: 

𝛽1(2𝑛 + 1)[𝑛𝑉
″𝑉 − (𝑛 − 1)𝑉′2] − 𝑛2(2𝑛 + 1)(3𝜅2𝛽1 + 2𝜅𝑎1 + 𝜌 + 𝜆1)𝑉

2 

                          +𝑛2[2𝑛(𝛼1 − 𝜇1) + 𝛼1 − 𝜃1]𝑉
4 = 0.                                          (22) 

Next, we will apply the generalized  (𝐹′/𝐹) -expansion approach to determine the solitons waves and other exact 

solutions of Equations (1), (2). 

3. The generalized  (𝑭′/𝑭) -expansion approach 
By balancing  𝑉𝑉″  and  𝑉4  in equation (22), we obtain the balance number  𝑁 = 1.  The  (𝐹′/𝐹)  expansion 

approach [27-29] assumes the exact wave solution of equation (22) can be written as: 
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                                               𝑉(𝜉) = 𝐴0 + 𝐴1 [
𝐹′(𝜉)

𝐹(𝜉)
],                                            (23) 

and  𝐹(𝜉)  is a function of    satisfying the Jacobi elliptic equation: 

                     𝐹′2(𝜉) = 𝑅0 + 𝑅2𝐹
2(𝜉) + 𝑅4𝐹

4(𝜉),                                                    (24) 

where  𝐴0,  𝐴1,  𝑅0,  𝑅2  and  𝑅4  are constants, such that  𝐴1 ≠ 0 . Equation (24) has many exact solutions of Ja-

cobi-elliptic functions and Weierstrass-elliptic functions [27-31] as the following tables: 
 

Table A: ( )The Jacobi-elliptic function solutions  : 

 

Case 

 

          𝑅4            
 

          𝑅2            
 

          𝑅0            
 

          𝐹(𝜉)            
1 l2

  −(𝑙2 + 1)  1  sn (𝜉, 𝑙) 

2 l2
  −(1 + 𝑙2)  1  cd (𝜉, 𝑙) =

𝑐𝑛(𝜉,𝑙)

𝑑𝑛(𝜉,𝑙)
 

3  −𝑙2  2𝑙2 − 1   1 − 𝑙2  𝑐𝑛(𝜉, 𝑙) 
4 1 − 𝑙2  2 − 𝑙2 1  

𝑠𝑐(𝜉, 𝑙) =
𝑠𝑛(𝜉, 𝑙)

𝑐𝑛(𝜉, 𝑙)
 

5  
1

4
   

1−2𝑙2

2
  

1

4
   𝑛𝑠(𝜉, 𝑙) ± 𝑐𝑠(𝜉, 𝑙)  

 

By differentiating equation (23) and successively applying equation (24), we can get the following derivatives: 

{
 
 

 
 𝑉′2(𝜉) = 𝐴1

2𝑅2
2 − 2𝐴1

2𝑅2 (
𝐹′(𝜉)

𝐹(𝜉)
)
2

+ 𝐴1
2 (

𝐹′(𝜉)

𝐹(𝜉)
)
4

− 4𝑅4𝐴1
2𝑅0

𝑉″(𝜉) = 2𝐴1 (
𝐹′(𝜉)

𝐹(𝜉)
) [(

𝐹′(𝜉)

𝐹(𝜉)
)
2

− 𝑅2] . )

 
 

                                  (25) 

By substituting (23) and (25) into equation (22), then collecting all the coefficients of  (
𝐹′(𝜉)

𝐹(𝜉)
)
𝑖

,  (𝑖 =

0,  1,  2,  3,  4) , setting them equal to zero, we get the algebraic equations: 

(
𝐹′(𝜉)

𝐹(𝜉)
)
4

  :   2𝛽(2𝜗1
2
1
𝑛 − 𝜗1

2(𝑛 − 1)) (𝑛 +
1

2
) + 2𝑛2 ((𝛼1 − 𝜇1)𝑛 +

𝛼1

2
−

𝜃1

2
) 𝜗1

4 = 0,  

 (
𝐹′(𝜉)

𝐹(𝜉)
)
3

  :   4𝛽1𝜗1𝜗0𝑛 (𝑛 +
1

2
) + 8𝑛2 ((𝛼1 − 𝜇1)𝑛 +

𝛼1

2
−

𝜃1

2
) 𝜗1

3𝜗0 = 0,  

(
𝐹′(𝜉)

𝐹(𝜉)
)
2

  :   2𝛽1(−2𝜗1
2𝑅2𝑛 + 2𝜗1

2𝑅2(𝑛 − 1)) (𝑛 +
1

2
) + 12𝑛2 ((𝛼1 − 𝜇1)𝑛 +

𝛼1

2
−                        

𝜃1

2
) 𝜗0

2𝜗1
2 

−2𝑛2 (𝑛 +
1

2
) (3𝜅2𝛽1 + 2𝜅𝑎1 + 𝜌 + 𝜆1)𝜗1

2 = 0, 

(
𝐹′(𝜉)

𝐹(𝜉)
)  : −4𝛽1𝑅2𝜗1𝜗0𝑛 (𝑛 +

1

2
) + 8𝑛2 ((𝛼1 − 𝜇1)𝑛 +

𝛼1

2
−

𝜃1

2
) 𝜗0

3𝜗1  

          −4𝑛2 (𝑛 +
1

2
) (3𝜅2𝛽1 + 2𝜅𝑎1 + 𝜌 + 𝜆1)𝜗1𝜗0 = 0,  

(
𝐹′(𝜉)

𝐹(𝜉)
)
0

  : −2𝛽1(−4𝑅4𝜗1
2𝑅0 + 𝜗1

2𝑅2
2)(𝑛 − 1) (𝑛 +

1

2
) + 2𝑛2 ((𝛼1 − 𝜇1)𝑛 +

𝛼1

2
−                     

𝜃1

2
) 𝜗0

4  −2𝑛2 (𝑛 +

1

2
) (3𝜅2𝛽1 + 2𝜅𝑎1 + 𝜌 + 𝜆1)𝜗0

2 = 0. 

On solving the above algebraic equations  (
𝐹′(𝜉)

𝐹(𝜉)
)
0

− (
𝐹′(𝜉)

𝐹(𝜉)
)
4

  using Maple, we have the result: 

𝑅4 = 𝑅4,  𝑅0 = 𝑅0,  𝑛 = 1,  𝜌 = −3𝜅2𝛽1 − 2𝛽1𝑅2 − 2𝜅𝑎1 − 𝜆1 , 𝜗0 = 0, 𝜗1 = √−
6𝛽1

3𝛼1−2𝜇1−𝜃1
,                                                                                                         

(26) 

provided  𝛽1(3𝛼1 − 2𝜇1 − 𝜃1) < 0.  
Substituting (26) into (23), we have the general solution of equation (22): 

                𝑉(𝜉) = √−
6𝛽1

3𝛼1−2𝜇1−𝜃1
[
𝐹′(𝜉)

𝐹(𝜉)
].                                                              (27) 

Now, according to Table A., Table B. and the general solution (27), we deduce the cases of soliton wave solutions 

of equations (1), (2) as follows: 

 

Case-1. When  𝑅4 = 𝑙2,  𝑅2 = −(𝑙
2 + 1), 𝑅0 = 1,  with  0 < 𝑙 < 1 ,  𝐹(𝜉) = 𝑠𝑛(𝜉, 𝑙),  we derive the Jacobi-

elliptic solutions 

           𝜑(𝑥, 𝑡) =  {√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
(
𝑐𝑛(𝜉,𝑙)𝑑𝑛(𝜉,𝑙)

𝑠𝑛(𝜉,𝑙)
)} 𝑒𝑖[𝑄(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎

2𝑡] ,                (28) 
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                                                   𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                              (29) 

Specifically, as  𝑙 → 1 , Equations (1), (2) exhibit straddled solitons 

   𝜑(𝑥, 𝑡) = {√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
𝑠𝑒𝑐ℎ(𝜉)𝑐𝑠𝑐ℎ(𝜉)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡],             (30) 

                                            𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                               (31) 

Case-2. When  𝑅4 = 𝑙2,  𝑅2 = −(1 + 𝑙
2), 𝑅0 = 1,  with  0 < 𝑙 < 1 ,  𝐹(𝜉) = 𝑐𝑑(𝜉, 𝑙),  we derive the Jacobi-el-

liptic solutions 

𝜑(𝑥, 𝑡) = {−√−
6𝛽1

3𝛼1 − 2𝜇1 − 𝜃1
(
(1 − 𝑙2)𝑠𝑛(𝜉, 𝑙)

𝑑𝑛(𝜉, 𝑙)2𝑐𝑑(𝜉, 𝑙)
)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡] ,      (32) 

                                         𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                        (33) 
Case-3. When  𝑅4 = −𝑙2,  𝑅2 = 2𝑙

2 − 1, 𝑅0 = 1 − 𝑙
2,  with  0 < 𝑙 < 1 ,  𝐹(𝜉) = 𝑐𝑛(𝜉, 𝑙),  we derive the Jacobi-

elliptic solutions 

𝜑(𝑥, 𝑡) = {−√−
6𝛽1

3𝛼1 − 2𝜇1 − 𝜃1
(
𝑑𝑛(𝜉, 𝑙) 𝑠𝑛(𝜉, 𝑙)

𝑐𝑛(𝜉, 𝑙)
)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡] ,        (34) 

                                         𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                   (35) 

Specifically, as  𝑙 → 1  , Equations (1) and (2) exhibit dark solitons 

 

𝜑(𝑥, 𝑡) = {−√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
𝑡𝑎𝑛ℎ(𝜉)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡],                                   (36) 

                                          𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                  (37) 
Figure 1: illustrates the simulations of soliton solution (36) in two-dimensional and three-dimensional plots 

with values:  𝛽1 = −1, 𝛼1 = 2, 𝜇1 = 2, 𝜃1 = 𝜅 = 𝜔 = 𝜌 = 1,  𝜎 = 0.02   

 and  𝑊1(𝑡) = √𝑡.  
 

 
Figure 1. The profile of the dark soliton solution (36). 

 

Case-4. When  𝑅4 = 1 − 𝑙2,  𝑅2 = 2 − 𝑙
2,  𝑅0 = 1,  with  0 < 𝑙 < 1 ,  𝐹(𝜉) = 𝑠𝑐(𝜉, 𝑙),  we derive the Jacobi-el-

liptic solutions 

𝜑(𝑥, 𝑡) = {√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
(

𝑑𝑛(𝜉,𝑙)

𝑐𝑛(𝜉,𝑙) 𝑠𝑛(𝜉,𝑙)
)}
  

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡],                   (38) 

                                       𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                    (39) 
Specifically, as  𝑙 → 1  , Equations (1) and (2) exhibit singular solitons 

 

𝜑(𝑥, 𝑡) = {√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
𝑐𝑜𝑡ℎ(𝜉)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡] ,                                     (40) 

                                         𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                         (41) 

Case-5. When  𝑅4 =
1

4
,  𝑅2 =

1−2𝑙2

2
,  𝑅0 =

1

4
,  with  0 < 𝑙 < 1 ,  𝐹(𝜉) = 𝑛𝑠(𝜉, 𝑙) ± 𝑐𝑠(𝜉, 𝑙),  we derive the Ja-

cobi-elliptic solutions 

𝜑(𝑥, 𝑡) = {∓√−
6𝛽1

3𝛼1−2𝜇1−𝜃1
𝑑𝑠(𝜉, 𝑙)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡],                                    (42) 

                                        𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                          (43) 

In particular, if  𝑙 → 1 , then equations (1) and (2) have the singular solitons  

𝜑(𝑥, 𝑡) = {∓√−
6𝛽1

3𝛼1 − 2𝜇1 − 𝜃1
𝑐𝑠𝑐ℎ(𝜉)}

 

𝑒𝑖[𝜗(𝑥,𝑡)+𝜎𝑊(𝑡)−𝜎
2𝑡],                              (44) 
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                                  𝜓(𝑥, 𝑡) = 𝛺1𝜑(𝑥, 𝑡).                                                                (45) 

4. Conclusions 
The generalized  (𝐹′/𝐹) -expansion approach with the auxiliary equation             𝐹′2(𝜉) = 𝑅0 + 𝑅2𝐹

2(𝜉) +
𝑅4𝐹

4(𝜉)  has been employed to obtain the solitons wave solutions of the stochastic R.K.L equation in magneto-

optic waveguides with multiplicative white noise in the Itô sense and nonlinear power law. Dark, singular solitons 

solutions as well as Jacobi-elliptic function solutions are reported for the first time. Solitons solutions have been 

obtained by imposing specific constraints, which are also outlined in the current work. This study has been intro-

duced a new model in the field of nonlinear optics, making the obtained results distinct from previously published 

works. We have presented a numerical simulation of the dark soliton (36), which represents the most important 

soliton solution, through two-dimensional and three-dimensional plots at small value of noise coefficient. In this 

figure, it is observed as the noise level increases, the surface becomes smoother after small transitional behaviors. 

This indicates that the presence of multiplicative noise affects the solutions and contributes to their stability. Ulti-

mately, this study concludes that the noise effect, specifically the strength of the noise, has a significant impact on 

soliton solutions. 
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